FPGA:乒乓球比赛模拟机的设计

简介

  • 开发板:EGO1
  • 开发环境:Windows10 + Xilinx Vivado 2020
  • 数字逻辑大作业题目 7: 乒乓球比赛模拟机的设计
  • 乒乓球比赛模拟机用发光二极管(LED)模拟乒乓球运动轨迹,是由甲乙双方参赛,加上裁判的三人游戏(也可以不用裁判)。

管脚约束代码:

点击查看代码
set_property IOSTANDARD LVCMOS33 [get_ports CLK]
set_property IOSTANDARD LVCMOS33 [get_ports hitA]
set_property IOSTANDARD LVCMOS33 [get_ports hitB]
set_property PACKAGE_PIN P17 [get_ports CLK]
set_property PACKAGE_PIN P5 [get_ports hitA]
set_property PACKAGE_PIN R1 [get_ports hitB]

set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {ballLocation[6]}]
set_property PACKAGE_PIN F6 [get_ports {ballLocation[7]}]
set_property PACKAGE_PIN G4 [get_ports {ballLocation[6]}]
set_property PACKAGE_PIN G3 [get_ports {ballLocation[5]}]
set_property PACKAGE_PIN J4 [get_ports {ballLocation[4]}]
set_property PACKAGE_PIN H4 [get_ports {ballLocation[3]}]
set_property PACKAGE_PIN J3 [get_ports {ballLocation[2]}]
set_property PACKAGE_PIN J2 [get_ports {ballLocation[1]}]
set_property PACKAGE_PIN K2 [get_ports {ballLocation[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports speedA]
set_property PACKAGE_PIN P4 [get_ports speedA]
set_property IOSTANDARD LVCMOS33 [get_ports speedB]
set_property PACKAGE_PIN N4 [get_ports speedB]

set_property IOSTANDARD LVCMOS33 [get_ports {statusOut[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {statusOut[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {statusOut[1]}]
set_property PACKAGE_PIN K1 [get_ports {statusOut[3]}]
set_property PACKAGE_PIN H6 [get_ports {statusOut[2]}]
set_property PACKAGE_PIN M1 [get_ports {statusOut[1]}]
set_property PACKAGE_PIN K3 [get_ports {statusOut[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {statusOut[0]}]

set_property IOSTANDARD LVCMOS33 [get_ports {LED1[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED1[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED1[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED1[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED1[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED1[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED0[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED1[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDBit[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LED1[7]}]
set_property PACKAGE_PIN B4 [get_ports {LED0[0]}]
set_property PACKAGE_PIN A4 [get_ports {LED0[1]}]
set_property PACKAGE_PIN A3 [get_ports {LED0[2]}]
set_property PACKAGE_PIN B1 [get_ports {LED0[3]}]
set_property PACKAGE_PIN A1 [get_ports {LED0[4]}]
set_property PACKAGE_PIN B3 [get_ports {LED0[5]}]
set_property PACKAGE_PIN B2 [get_ports {LED0[6]}]
set_property PACKAGE_PIN D5 [get_ports {LED0[7]}]
set_property PACKAGE_PIN D4 [get_ports {LED1[0]}]
set_property PACKAGE_PIN E3 [get_ports {LED1[1]}]
set_property PACKAGE_PIN D3 [get_ports {LED1[2]}]
set_property PACKAGE_PIN F4 [get_ports {LED1[3]}]
set_property PACKAGE_PIN F3 [get_ports {LED1[4]}]
set_property PACKAGE_PIN E2 [get_ports {LED1[5]}]
set_property PACKAGE_PIN D2 [get_ports {LED1[6]}]
set_property PACKAGE_PIN H2 [get_ports {LED1[7]}]
set_property PACKAGE_PIN G2 [get_ports {LEDBit[0]}]
set_property PACKAGE_PIN C2 [get_ports {LEDBit[1]}]
set_property PACKAGE_PIN C1 [get_ports {LEDBit[2]}]
set_property PACKAGE_PIN H1 [get_ports {LEDBit[3]}]
set_property PACKAGE_PIN G1 [get_ports {LEDBit[4]}]
set_property PACKAGE_PIN F1 [get_ports {LEDBit[5]}]
set_property PACKAGE_PIN E1 [get_ports {LEDBit[6]}]
set_property PACKAGE_PIN G6 [get_ports {LEDBit[7]}]

set_property IOSTANDARD LVCMOS33 [get_ports reset]
set_property PACKAGE_PIN P2 [get_ports reset]

设计要求

  1. 主要功能
    1. 模拟乒乓球比赛,用发光二极管(LED)模拟乒乓球运动轨迹,由甲乙双方参赛;
    2. 用8个LED灯表示球桌,其中点亮的LED来回移动表示乒乓球的运动,球速可以调节;
    3. 当球移动到最左侧或最右侧时,表示一方的击球位置。如果提前击球,或未及时击球,则对方得一分;
    4. 甲乙得分使用数码管计分,一局11球;
    5. 用发光二极管表示甲乙的发球权,每5分交换发球权。
  2. 附加功能
    1. 用发光二极管提示甲乙的接球和发球;
    2. 比赛结束后,用数码管动态显示胜利的一方。

工作原理

本电路由时钟分频模块,玩家控制器模块,分数处理模块,游戏控制模块,乒乓球运动控制模块和数码管显示模块组成。

  1. 比赛开始前,可以通过reset开关重置比赛;
  2. 比赛进行时,甲乙两位选手通过扳动开关来实现挥动球拍和控制球速的效果。当乒乓球到击球位置时,若选手未及时击球,或提前击球,则输掉一球,对方加一分。每打5球,就交换一次球权,共打11球,数码管上会显示当前得分,分高者获胜;
  3. 比赛结束后,数码管会显示箭头来表示一方的获胜;
  4. 另外还有4个LED来表示双方的发球和接球。
  5. 系统方框图:

FPGA:乒乓球比赛模拟机的设计插图


各部分模块具体功能及设计思路

游戏控制器模块

  1. 模块功能:控制整个模拟器各组件状态;
  2. 设计思路:该模块主要是用于控制比赛的进行。在设计中,使用status表示当前的比赛状态。010表示A发球,001表示B发球,110表示玩家A接球,101表示玩家B接球。这样的规定能够有效区分乒乓球不同的运动状态,并判定发/击球的有效性,同时显示在LED灯上来提示选手。另外再用accurateBallLocation [32:0]来表示球的精确位置,范围为$1000_{10} - 9000_{10} $,这样使球在LED显示的误差范围内,可以被击中。
  3. 代码:
点击查看代码
`timescale 1ns / 1ps

module GameController(  //全局状态控制器
    input CLK, 
    input reg hitA, //玩家A输入
    input [1: 0] speedA, //玩家A速度
    input reg hitB,  //玩家B输入
    input [1: 0] speedB,  //玩家B速度
    input reg serviceSide, //发球方
    input reg reset,    //重置
    output reg [2: 0] status, //全局状态
    output reg [7: 0] ballLocation, //球位置
    output reg getScoreA,   //A得分
    output reg getScoreB    //B得分
    );

    reg hitATrigger;
    reg hitBTrigger;
    reg [2: 0] speed;
    reg [15: 0] accurateBallLocation;
    reg resetTrigger;
    // reg serviceSide;

    initial begin   //初始化变量
        hitATrigger = 'b0;
        hitBTrigger = 'b0;
        status = 'b010;
        accurateBallLocation = 'd2000;
        speed = 'd2;
        // serviceSide = 'b0;

        getScoreA = 'b0;
        getScoreB = 'b0;
        resetTrigger = 'b0;
    end

    always @(posedge CLK) begin     //根据报告所述转换状态
        if(resetTrigger == 'b0 && reset == 'b1) begin
            hitATrigger = 'b0;
            hitBTrigger = 'b0;
            status = 'b010;
            accurateBallLocation = 'd2000;
            speed = 'd2;
            // serviceSide = 'b0;

            getScoreA = 'b0;
            getScoreB = 'b0;
        end
        else begin
            if(status == 'b010 || status == 'b001) begin//换发球
                status = serviceSide == 'b0 ? 'b010 : 'b001;
                getScoreA = 'b0;
                getScoreB = 'b0;
            end

            if(status == 'b010) begin //A发球

                accurateBallLocation = 'd2000;

                if(hitATrigger == 'b0 && hitA == 'b1) begin
                    status = 'b101;
                    if(speedA == 'd00) speed = 'd2;
                    else speed = 'd4;
                end 
                hitATrigger = hitA;

            end
            else if(status == 'b001) begin //B发球

                accurateBallLocation = 'd10000;

                if(hitBTrigger == 'b0 && hitB == 'b1) begin
                    status = 'b110;
                    if(speedB == 'd00) speed = 'd2;
                    else speed = 'd4;
                end 
                hitBTrigger = hitB;

            end
            else if(status == 'b110) begin //A接球
                if(hitATrigger == 'b0 && hitA == 'b1) begin
                    if(accurateBallLocation >= 'd1000 && accurateBallLocation = 'd9000 && accurateBallLocation 'd11500) begin 
                    getScoreA = 'b1;
                    status = serviceSide == 'b0 ? 'b010 : 'b001;
                end 

                accurateBallLocation += speed * 'd3;

            end
        end

        resetTrigger = reset;

        if(accurateBallLocation >= 'd2000 && accurateBallLocation = 'd3000 && accurateBallLocation = 'd4000 && accurateBallLocation = 'd5000 && accurateBallLocation = 'd6000 && accurateBallLocation = 'd7000 && accurateBallLocation = 'd8000 && accurateBallLocation = 'd9000 && accurateBallLocation 

玩家控制模块

  1. 模块功能:控制玩家输入与接发球操作;
  2. 设计思路:在设计电路中规定了使能端EN,玩家只有在轮到自己发/击球时才有效;并规定了击球的间隔,模拟了击空的情况除此之外还设计实现了玩家击球速度的选择
  3. 代码:
点击查看代码
`timescale 1ns / 1ps

module Player(CLK, EN, hit, speed, hitOut, speedOut);
    input CLK, EN, hit, speed;
    output reg hitOut;
    output reg [1: 0] speedOut;

    reg [31: 0] activeInterval = 'd1000;    //一个下降沿到下一个上升沿直接最小时间间隔

    reg [31: 0] interval;
    reg hitTrigger;

    initial begin
        interval = 'd0;
        hitTrigger = 'b0;
        hitOut = 'b0;
        speedOut = 'b1;
    end

    always @(posedge CLK) begin
        if(EN == 'b1) begin
            if(hitTrigger =='b0 && hit == 'b1) begin
                if(interval >= activeInterval) begin
                    hitOut = hit;
                end
            end
            else if(hitTrigger == 'b1 && hit == 'b0) begin
                interval = 'd0;
                hitOut = hit;
            end
            hitTrigger = hit;
            interval += 1;

            if(speed == 'b0) begin
                speedOut = 'd00;
            end
            else begin
                speedOut = 'd01;
            end
        end

    end

endmodule

时钟分频模块

  1. 模块功能:对时钟分频;
  2. 设计思路:将EG01100MHZ的时钟分频为1000HZ
  3. 代码:
点击查看代码
`timescale 1ns / 1ps

module ClockDivider(originCLK, dividedCLK);
    input originCLK;
    output dividedCLK;
    reg tempDivCLK;
    reg [31: 0] count;
    // reg [31: 0] ratio = 'd2;
    reg [31: 0] ratio = 'd100_000;  //时钟分频器,将P17的100MHz分为1000Hz
    initial begin
        tempDivCLK = 'b0;
        count = 'd0;
    end
    always @(posedge originCLK) begin
        count = count + 1;
        if(count == ratio)
            count = 'd0;

        if(count == 'd0) 
            tempDivCLK = 'b0;
        if(count == ratio / 2) 
            tempDivCLK = 'b1;

    end
    assign dividedCLK = tempDivCLK;
endmodule

乒乓球控制模块

  1. 模块功能:接受信号控制乒乓球从左向右移动,或者从右向左移动,并且可以根据玩家选择的击球速度去调整;
  2. 设计思路:用8LED模拟,点亮的灯表示球的位置,然后像流水灯一样来回滚动,在发球时暂停。
  3. 代码:这里实际上包括在了游戏控制,下面代码是调用其他的Main。
点击查看代码
`timescale 1ns / 1ps

module Main(
    input CLK, 
    input hitA, 
    input speedA, 
    input hitB, 
    input speedB, 
    input reset,
    output reg [3: 0] statusOut, 
    output wire [7: 0] ballLocation,
    output wire [7:0] LED0, 
    output wire [7:0] LED1, 
    output wire [7:0] LEDBit
    );

    wire [2: 0] status;
    wire dividedCLK;
    wire [1: 0] speedOutA;
    wire [1: 0] speedOutB;
    wire getScoreA, getScoreB;
    ClockDivider clockDivider(CLK, dividedCLK);
    wire serviceSide;

    reg EnA;
    reg EnB;
    initial begin
        EnA = 'b1;
        EnB = 'b1;
    end

    Player player1(dividedCLK, EnA, hitA, speedA, hitOutA, speedOutA);
    Player player2(dividedCLK, EnB, hitB, speedB, hitOutB, speedOutB);

    GameController gameController(  //调用全局状态控制器
        dividedCLK, 
        hitOutA, 
        speedOutA, 
        hitOutB, 
        speedOutB, 
        serviceSide,
        reset,
        status, 
        ballLocation, 
        getScoreA, 
        getScoreB

    );

    always @(posedge dividedCLK) begin
        if(status == 'b010) begin
            statusOut = 'b1000;
        end
        else if(status == 'b001) begin
            statusOut = 'b0001;
        end
        else if(status == 'b110) begin
            statusOut = 'b0100;
        end
        else if(status == 'b101) begin
            statusOut = 'b0010;
        end
    end

    reg [7:0][7:0] dataIn;

    reg [31:0] count;
    initial begin 
        count = 'd0;
        while(count 

分数处理模块

  1. 模块功能:计数。每进行一轮控制分数加1,判断是否已打够11球,是则判别出获胜方。
  2. 设计思路:在A,B两人分数上升沿时,对总分加1,然后判断是否已满11球。若满11球,比较判断出胜利的一方,随后将其状态传给显示模块用于显示结果。
  3. 代码:
点击查看代码
`timescale 1ns / 1ps

module ScoreBoard(
    input CLK, 
    input getScoreA, 
    input getScoreB, 
    input reset,
    output reg serviceSide, 
    output reg endGame, 
    output reg [1:0] winner, 
    output reg [15: 0] scoreA, 
    output reg [15: 0] scoreB
    );
    reg getScoreATrigger;
    reg getScoreBTrigger;
    reg resetTrigger;
    initial begin
        serviceSide = 'b0;
        endGame = 'b0;
        getScoreATrigger = 'b0;
        getScoreBTrigger = 'b0;
        scoreA = 'b0;
        scoreB = 'b0;
        resetTrigger = 'b0;
    end
    always @(posedge CLK) begin
        if(resetTrigger == 'b0 && reset == 'b1) begin
            serviceSide = 'b0;
            endGame = 'b0;
            getScoreATrigger = 'b0;
            getScoreBTrigger = 'b0;
            scoreA = 'b0;
            scoreB = 'b0;
        end
        else begin  //getScoreA或getScoreB出现上升沿,对应玩家得分
            if(getScoreATrigger == 'b0 && getScoreA == 'b1)
                scoreA ++;
            if(getScoreBTrigger == 'b0 && getScoreB == 'b1)
                scoreB ++;

            getScoreATrigger = getScoreA;
            getScoreBTrigger = getScoreB;

            if((scoreA + scoreB) / 5 % 2 == 'd0)    //每5个球换发
                serviceSide = 'b0;
            else
                serviceSide = 'b1;
            if(scoreA + scoreB == 'd11) //到达11个球时游戏结束
                endGame = 'b1;

            if(endGame == 1) begin  //游戏结束时判断赢的那方
                if(scoreA > scoreB)
                winner = 'b10;
                else if(scoreA 

数码管显示模块

  1. 模块功能:利用数码管显示比赛数据;
  2. 设计思路:使用$ 8 * 8 $的矩阵显示每个数码管的显示情况,另外设有对每个数码管表示显示的标志,从而动态地去更新。在有一方获胜后,会将不显示分数的数码管动态地闪烁箭头,以此来表示获胜的一方。
  3. 代码:
点击查看代码
`timescale 1ns / 1ps
//参考EGO1的数码管显示模块

module DigitalTubeDriver(   //数码管驱动
    input CLK, 
    input reg [7:0][7:0] dataIn,    //输入数据
    output reg [7:0] LED0,  //输出的LED0,管理前4位显示
    output reg [7:0] LED1,  //输出的LED1,管理后4位显示
    output reg [7:0] LEDBit //LEDBIT,管理每个亮或不亮
    );

    reg [3:0] count;

    wire [7:0] data0;

    initial begin
        LEDBit = 'b00000001;
        count = 'd0;
    end

    // assign LED1 = LED0;

    always @(posedge CLK) begin

        case(dataIn[count]) //检查每种数字或符号对应亮哪些边
            'd0: LED0 = 'b00111111;
            'd1: LED0 = 'b00000110;
            'd2: LED0 = 'b01011011;
            'd3: LED0 = 'b01001111;
            'd4: LED0 = 'b01100110;
            'd5: LED0 = 'b01101101;
            'd6: LED0 = 'b01111101;
            'd7: LED0 = 'b00000111;
            'd8: LED0 = 'b01111111;
            'd9: LED0 = 'b01101111;
            'd21: LED0 = 'b01110000;
            'd22: LED0 = 'b01000110;
            default: LED0 = 'b00000000;
        endcase

        if(count == 'd7) begin
            count = 'd0;
            LEDBit = 'b00000001;
        end
        else if(count == 'd0) begin
            LEDBit = 'b10000000;
            count = 'd1;
        end
        else begin
            count++;
            LEDBit = LEDBit >> 1;
        end
        LED1 = LED0;

    end

endmodule

参考文献

[1] Vivado环境下多个并行的仿真测试文件如何支持单独仿真。

https://blog.csdn.net/CDCL19_220327/article/details/125802252?spm=1001.2014.3001.5502

[2] Vivado里程序固化详细教程。

https://blog.csdn.net/sinat_15674025/article/details/84535754?spm=1001.2014.3001.5502

[3] xilinx vivado 自带仿真工具xsim信号为蓝色Z态的解决办法。

https://blog.csdn.net/Shawge/article/details/107592471?spm=1001.2014.3001.5502

[4] Vivado环境下多个并行的仿真测试文件如何支持单独仿真?

https://blog.csdn.net/CDCL19_220327/article/details/125802252?spm=1001.2014.3001.5502

文章来源于互联网:FPGA:乒乓球比赛模拟机的设计

THE END
分享
二维码