OpenCV之C++经典案例

四个案例实战

1、刀片缺陷检测

2、自定义对象检测

3、实时二维码检测

4、图像分割与色彩提取

1、刀片缺陷检测

问题分析

OpenCV之C++经典案例插图

OpenCV之C++经典案例插图1

解决思路

  • 尝试二值图像分析
  • 模板匹配技术

OpenCV之C++经典案例插图2

代码实现

#include 
#include 

using namespace cv;
using namespace std;

Mat tpl;
void sort_box(vector &boxes);
void detect_defect(Mat &binary, vector rects, vector &defect);
int main(int argc, char** argv) {
    Mat src = imread("D:/images/ce_01.jpg");
    if (src.empty()) {
        printf("could not load image file...");
        return -1;
    }
    namedWindow("input", WINDOW_AUTOSIZE);
    imshow("input", src);

    //图像二值化
    Mat gray, binary;
    cvtColor(src, gray, COLOR_BGR2GRAY);
    threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);  //全局阈值
    imshow("binary", binary);

    //定义结构元素,进行开操作去除小的干扰点
    Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    morphologyEx(binary, binary, MORPH_OPEN, se);
    imshow("open-binary", binary);

    //轮廓发现
    vector> contours;
    vector hierarchy;
    vector rects;
    findContours(binary, contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);

    int height = src.rows;
    for (size_t t = 0; t  (height / 2)) {
            continue;
        }
        if (area  defects;
    detect_defect(binary, rects, defects);

    for (int i = 0; i  &boxes) {
    int size = boxes.size();
    for (int i = 0; i  rects, vector &defect) {
    int h = tpl.rows;
    int w = tpl.cols;
    int size = rects.size();
    for (int i = 0; i (row, col);  //获取每一个像素值,如果等于255则count+1
                if (pv == 255) {
                    count++;
                }
            }
        }

        //填充一个像素块
        int mh = mask.rows + 2;
        int mw = mask.cols + 2;
        Mat m1 = Mat::zeros(Size(mw, mh), mask.type());
        Rect mroi;  //将mask复制到m1的mroi区域,并使mroi区域四周各有一个像素值为0
        mroi.x = 1;
        mroi.y = 1;
        mroi.height = mask.rows;
        mroi.width = mask.cols;
        mask.copyTo(m1(mroi));

        //轮廓分析,对每个矩形中的差异进行过滤
        vector> contours;
        vector hierarchy;
        findContours(m1, contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);  //查找每一个矩形中微小的差异轮廓
        bool find = false;
        for (size_t t = 0; t 4的并且位于上下边缘的差异区域过滤
            if (ratio > 4.0 && (rect.y  10) {
                printf("ratio:%.2f,area:%.2f n", ratio, area);
                find = true;
            }
        }

        if (count > 50 && find) {  //如果等于255的像素个数>50并且符合以上判断要求,就将该矩形放入缺陷容器defect中
            printf("count:%d n", count);
            defect.push_back(rects[i]);
        }
    }
    //返回结果
}

效果:

1、图像二值化并开操作

OpenCV之C++经典案例插图3

2、获取每个刀片区域并排序

OpenCV之C++经典案例插图4

3、根据与模板差异的像素个数筛选有缺陷的刀片

OpenCV之C++经典案例插图5

4、根据每个刀片区域与模板的差异部位宽高比、位置及像素个数筛选有缺陷的刀片

OpenCV之C++经典案例插图6

2、自定义对象检测

解决思路

  • OpenCV中对象检测类问题
    • 模板匹配
    • 特征匹配
    • 特征 + 机器学习
  • 选择HOG特征 + SVM机器学习生成模型
  • 开窗检测

OpenCV之C++经典案例插图7

HOG特征

  • 灰度图像转换
  • 梯度计算
  • 分网格的梯度方向直方图
  • 块描述子
  • 块描述子归一化
  • 特征数据与检测窗口
  • 匹配方法

OpenCV之C++经典案例插图8

  • 根据块的形状不一样HOG特征分为C-HOG和R-HOG
  • 基于 L2 实现块描述子归一化,归一化因子计算:

    OpenCV之C++经典案例插图9

SVM简要介绍

  • 线性不可分映射为线性可分离
  • 核函数:线性、高斯、多项式等

首先svm算法,当遇到分布比较杂乱的函数时,可以进行升维处理,将二维不好处理的问题改为三维,是一个比较好的办法;

此外,svm分割数据的操作也比较合理,划分边界及区域在经过一些复杂的函数计算什么的,可以算出划分的边界的位置,划分好边界线,之后便可以划分边界区域,这样区分样本的时候就会事半功倍了。

对于升维进行计算数据的话,是存在一个核函数的,具体的讲解如下:

当样本在原始空间线性不可分时,可将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分。而引入这样的映射后,所要求解的对偶问题的求解中,无需求解真正的映射函数,而只需要知道其核函数。

核函数的定义:K(x,y)=,即在特征空间的内积等于它们在原始样本空间中通过核函数 K 计算的结果。一方面数据变成了高维空间中线性可分的数据,另一方面不需要求解具体的映射函数,只需要给定具体的核函数即可,这样使得求解的难度大大降低。
OpenCV之C++经典案例插图10

代码实现

#include 
#include 

using namespace cv;
using namespace cv::ml;
using namespace std;

string positive_dir = "D:/images/elec_watchzip/elec_watch/positive";
string negative_dir = "D:/images/elec_watchzip/elec_watch/negative";
void get_hog_descriptor(Mat &image, vector &desc);
void generate_dataset(Mat &trainData, Mat &labels);
void svm_train(Mat &trainData, Mat &labels);
int main(int argc, char** argv) {
    //read data and generate dataset
    Mat trainData = Mat::zeros(Size(3780, 26), CV_32FC1);
    Mat labels = Mat::zeros(Size(1, 26), CV_32SC1);
    generate_dataset(trainData, labels);

    //SVM train and save model
    svm_train(trainData, labels);

    //load model
    Ptr svm = SVM::load("D:/images/elec_watchzip/elec_watch/hog_elec.xml");  //读取训练好的模型

    //detect custom object
    Mat test = imread("D:/images/elec_watchzip/elec_watch/test/scene_01.jpg");
    resize(test, test, Size(0, 0), 0.2, 0.2);  //重新设置图像大小dsize与(fx、fy)不能同时为0
    imshow("input", test);
    Rect winRect;
    winRect.width = 64;
    winRect.height = 128;
    int sum_x = 0;
    int sum_y = 0;
    int count = 0;

    //开窗检测...
    for (int row = 64; row  fv;
            Mat img = test(winRect);
            get_hog_descriptor(img, fv);
            Mat one_row = Mat::zeros(Size(fv.size(), 1), CV_32FC1);
            for (int i = 0; i (0, i) = fv[i];
            }
            float result = svm->predict(one_row);
            if (result > 0) {
                //rectangle(test, winRect, Scalar(0, 0, 255), 1, 8, 0);
                count += 1;
                sum_x += winRect.x;
                sum_y += winRect.y;
            }
        }
    }
    //显示box
    winRect.x = sum_x / count;
    winRect.y = sum_y / count;
    rectangle(test, winRect, Scalar(255, 0, 0), 2, 8, 0);
    imshow("object detection result", test);
    waitKey(0);
    return 0;

}

void get_hog_descriptor(Mat &image, vector &desc) {
    HOGDescriptor hog;  //HOG描述子
    int h = image.rows;
    int w = image.cols;
    float rate = 64.0 / w;
    Mat img, gray;
    resize(image, img, Size(64, int(rate*h)));  //保证宽为64,同时宽高比例与原图相同
    cvtColor(img, gray, COLOR_BGR2GRAY);
    Mat result = Mat::zeros(Size(64, 128), CV_8UC1);
    result = Scalar(127);
    Rect roi;
    roi.x = 0;
    roi.width = 64;
    roi.y = (128 - gray.rows) / 2;
    roi.height = gray.rows;
    gray.copyTo(result(roi));
    hog.compute(result, desc, Size(8, 8), Size(0, 0));
    printf("desc len:%dn", desc.size());
}
void generate_dataset(Mat &trainData, Mat &labels) {
    vector images;
    glob(positive_dir, images);  //扫描目录,得到所有正样本
    int pos_num = images.size();
    for (int i = 0; i  fv;
        get_hog_descriptor(image, fv);
        for (int j = 0; j (i, j) = fv[j];
        }
        labels.at(i, 0) = 1;
    }
    images.clear();
    glob(negative_dir, images);
    for (int i = 0; i  fv;
        get_hog_descriptor(image, fv);
        for (int j = 0; j (i + pos_num, j) = fv[j];
        }
        labels.at(i + pos_num, 0) = -1;
    }
}
void svm_train(Mat &trainData, Mat &labels) {
    printf("n start SVM training... n");
    Ptr svm = SVM::create();
    svm->setC(2.67);  //值越大,分类模型越复杂
    svm->setType(SVM::C_SVC);  //分类器类型
    svm->setKernel(SVM::LINEAR);  //线性内核,速度快
    svm->setGamma(5.383);  //线性内核可以忽略,其他内核需要
    svm->train(trainData, ROW_SAMPLE, labels);  //按行读取
    clog save("D:/images/elec_watchzip/elec_watch/hog_elec.xml");  //保存路径

}

效果:

OpenCV之C++经典案例插图11

3、二维码检测与定位

二维定位检测知识点:

  • 二维码特征
  • 图像二值化
  • 轮廓提取
  • 透视变换
  • 几何分析

二维码特征

OpenCV之C++经典案例插图12

图像二值化与轮廓分析

  • 全局或者局部阈值选择
  • 全局阈值分割
  • 最外层轮廓与多层轮廓
  • 面积与几何形状过滤
  • 透视变换与单应性矩阵

OpenCV之C++经典案例插图13

几何分析

  • 寻找每个正方形
  • 寻找X方向1 : 1 : 3 : 1 : 1结构
  • 寻找Y方向比率结构
  • 得到输出结果

算法流程设计

  • 面积太小不能识别排除

OpenCV之C++经典案例插图14

代码层面知识点与运行

  • minAreaRect
  • findHomography
  • warpPerspective

OpenCV之C++经典案例插图15

代码实现

#include 
#include 

using namespace cv;
using namespace std;

void scanAndDetectQRCode(Mat & image);
bool isXCorner(Mat &image);
bool isYCorner(Mat &image);
Mat transformCorner(Mat &image, RotatedRect &rect);
int main(int argc, char** argv) {
    // Mat src = imread("D:/images/qrcode.png");
    Mat src = imread("D:/images/qrcode_07.png");
    if (src.empty()) {
        printf("could not load image file...");
        return -1;
    }
    namedWindow("input", WINDOW_AUTOSIZE);
    imshow("input", src);
    scanAndDetectQRCode(src);
    waitKey(0);
    return 0;
}

void scanAndDetectQRCode(Mat & image) {
    Mat gray, binary;
    cvtColor(image, gray, COLOR_BGR2GRAY);
    threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
    imshow("binary", binary);

    // detect rectangle now
    vector> contours;
    vector hireachy;
    Moments monents;
    findContours(binary.clone(), contours, hireachy, RETR_LIST, CHAIN_APPROX_SIMPLE, Point());
    Mat result = Mat::zeros(image.size(), CV_8UC1);
    for (size_t t = 0; t  0.85 && w (t), Scalar(255, 0, 0), 2, 8);
                drawContours(result, contours, static_cast(t), Scalar(255), 2, 8);
            }
        }
    }

    // scan all key points
    vector pts;
    for (int row = 0; row (row, col);
            if (pv == 255) {
                pts.push_back(Point(col, row));  //向pts容器中添加白色像素点坐标
            }
        }
    }
    RotatedRect rrt = minAreaRect(pts);  //获取pts的最小外接矩形
    Point2f vertices[4];
    rrt.points(vertices);
    pts.clear();
    for (int i = 0; i > cpts;
    cpts.push_back(pts);
    drawContours(mask, cpts, 0, Scalar(255), -1, 8);  //填充

    Mat dst;
    bitwise_and(image, image, dst, mask);  //通过与操作,获取二维码区域

    imshow("detect result", image);
    //imwrite("D:/case03.png", image);
    imshow("result-mask", mask);
    imshow("qrcode-roi", dst);
}
bool isXCorner(Mat &image) {  //对找到的候选轮廓进行分析
    Mat gray, binary;
    cvtColor(image, gray, COLOR_BGR2GRAY);
    threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
    int xb = 0, yb = 0;
    int w1x = 0, w2x = 0;
    int b1x = 0, b2x = 0;

    int width = binary.cols;
    int height = binary.rows;
    int cy = height / 2;
    int cx = width / 2;
    int pv = binary.at(cy, cx);
    if (pv == 255) return false;  //判断中心像素是否为黑色
    // verfiy finder pattern
    bool findleft = false, findright = false;
    int start = 0, end = 0;
    int offset = 0;
    while (true) {  //从中间像素开始向两侧遍历查找
        offset++;
        if ((cx - offset) = width - 1) {
            start = -1;
            end = -1;
            break;
        }
        pv = binary.at(cy, cx - offset);
        if (pv == 255) {
            start = cx - offset;
            findleft = true;
        }
        pv = binary.at(cy, cx + offset);
        if (pv == 255) {
            end = cx + offset;
            findright = true;
        }
        if (findleft && findright) {  //当左右两侧都找到白色像素时终止循环,start和end分别保存起止坐标
            break;
        }
    }

    if (start  0; col--) {
        pv = binary.at(cy, col);
        if (pv == 0) {
            w1x = start - col;
            break;
        }
    }
    for (int col = end; col (cy, col);
        if (pv == 0) {
            w2x = col - end;
            break;
        }
    }
    for (int col = (end + w2x); col (cy, col);
        if (pv == 255) {
            b2x = col - end - w2x;
            break;
        }
        else {
            b2x++;
        }
    }
    for (int col = (start - w1x); col > 0; col--) {
        pv = binary.at(cy, col);
        if (pv == 255) {
            b1x = start - col - w1x;
            break;
        }
        else {
            b1x++;
        }
    }

    float sum = xb + b1x + b2x + w1x + w2x;
    //printf("xb : %d, b1x = %d, b2x = %d, w1x = %d, w2x = %dn", xb , b1x , b2x , w1x , w2x);
    xb = static_cast((xb / sum)*7.0 + 0.5);  //+0.5为了保证获取四舍五入的值,避免浮点数转换为0
    b1x = static_cast((b1x / sum)*7.0 + 0.5);
    b2x = static_cast((b2x / sum)*7.0 + 0.5);
    w1x = static_cast((w1x / sum)*7.0 + 0.5);
    w2x = static_cast((w2x / sum)*7.0 + 0.5);
    printf("xb : %d, b1x = %d, b2x = %d, w1x = %d, w2x = %dn", xb, b1x, b2x, w1x, w2x);
    if ((xb == 3 || xb == 4) && b1x == b2x && w1x == w2x && w1x == b1x && b1x == 1) { // 1:1:3:1:1
        return true;
    }
    else {
        return false;
    }
}
bool isYCorner(Mat &image) {  //对中心像素一侧的像素进行检测,对黑白像素个数分别计数,
    Mat gray, binary;
    cvtColor(image, gray, COLOR_BGR2GRAY);
    threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
    int width = binary.cols;
    int height = binary.rows;
    int cy = height / 2;
    int cx = width / 2;
    int pv = binary.at(cy, cx);
    int bc = 0, wc = 0;
    bool found = true;
    for (int row = cy; row > 0; row--) {
        pv = binary.at(row, cx);
        if (pv == 0 && found) {
            bc++;
        }
        else if (pv == 255) {
            found = false;
            wc++;
        }
    }
    bc = bc * 2;
    if (bc (rect.size.width);
    int height = static_cast(rect.size.height);
    Mat result = Mat::zeros(height, width, image.type());
    Point2f vertices[4];
    rect.points(vertices);
    vector src_corners;
    vector dst_corners;
    dst_corners.push_back(Point(0, 0));
    dst_corners.push_back(Point(width, 0));
    dst_corners.push_back(Point(width, height)); // big trick
    dst_corners.push_back(Point(0, height));
    for (int i = 0; i 

过程分析

OpenCV之C++经典案例插图16

效果:

OpenCV之C++经典案例插图17

4、KMeans应用

  • 数据聚类
  • 图像聚类
  • 背景替换
  • 主色彩提取

KMeans聚类算法原理

  • 聚类中心
  • 根据距离分类

​ 聚类和分类最大的不同在于,分类的目标是事先已知的,而聚类则不一样,聚类事先不知道目标变量是什么,类别没有像分类那样被预先定义出来,也就是聚类分组不需要提前被告知所划分的组应该是什么样的,因为我们甚至可能都不知道我们再寻找什么,所以聚类是用于知识发现而不是预测,所以,聚类有时也叫无监督学习。

KMeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。

K-means过程:

  1. 首先选择k个类别的中心点
  2. 对任意一个样本,求其到各类中心的距离,将该样本归到距离最短的中心所在的类
  3. 聚好类后,重新计算每个聚类的中心点位置
  4. 重复2,3步骤迭代,直到k个类中心点的位置不变,或者达到一定的迭代次数,则迭代结束,否则继续迭代

OpenCV之C++经典案例插图18

代码实现

#include 
#include 

using namespace cv;
using namespace std;

void kmeans_data_demo();
void kmeans_image_demo();
void kmeans_background_replace();
void kmeans_color_card();
int main(int argc, char** argv) {
    // kmeans_data_demo();
    // kmeans_image_demo();
    // kmeans_background_replace();
    kmeans_color_card();
    return 0;

    waitKey(0);
    return 0;
}

void kmeans_data_demo() {
    Mat img(500, 500, CV_8UC3);
    RNG rng(12345);

    Scalar colorTab[] = {
        Scalar(0, 0, 255),
        Scalar(255, 0, 0),
    };

    int numCluster = 2;  //聚类个数
    int sampleCount = rng.uniform(5, 500);  //随机产生的数据点个数,均匀分布
    Mat points(sampleCount, 1, CV_32FC2);  //矩阵大小为:数据点个数*1,每个点有两个维度

    // 生成随机数
    for (int k = 0; k (i);
        Point p = points.at(i);
        circle(img, p, 2, colorTab[index], -1, 8);  //对不同标签的点按不同颜色进行填充
    }

    // 每个聚类的中心来绘制圆
    for (int i = 0; i (i, 0);
        int y = centers.at(i, 1);
        printf("c.x= %d, c.y=%dn", x, y);
        circle(img, Point(x, y), 40, colorTab[i], 1, LINE_AA);
    }

    imshow("KMeans-Data-Demo", img);
    waitKey(0);
}
void kmeans_image_demo() {
    Mat src = imread("D:/images/toux.jpg");
    if (src.empty()) {
        printf("could not load image...n");
        return;
    }
    namedWindow("input image", WINDOW_AUTOSIZE);
    imshow("input image", src);

    Vec3b colorTab[] = {
        Vec3b(0, 0, 255),
        Vec3b(0, 255, 0),
        Vec3b(255, 0, 0),
        Vec3b(0, 255, 255),
        Vec3b(255, 0, 255)
    };

    int width = src.cols;
    int height = src.rows;
    int dims = src.channels();

    // 初始化定义
    int sampleCount = width * height;
    int clusterCount = 3;
    Mat labels;
    Mat centers;

    // RGB 数据转换到样本数据
    Mat sample_data = src.reshape(3, sampleCount);  //将输入图像转换到特定维数
    Mat data;
    sample_data.convertTo(data, CV_32F);

    // 运行K-Means
    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);  //停止迭代判定条件,迭代10次,精度达到0.1
    kmeans(data, clusterCount, labels, criteria, clusterCount, KMEANS_PP_CENTERS, centers);

    // 显示图像分割结果
    int index = 0;
    Mat result = Mat::zeros(src.size(), src.type());
    for (int row = 0; row (index, 0);
            result.at(row, col) = colorTab[label];  //按不同标签对结果中的点设置不同颜色
        }
    }

    imshow("KMeans-image-Demo", result);
    waitKey(0);
}
void kmeans_background_replace() {
    Mat src = imread("D:/images/toux.jpg");
    if (src.empty()) {
        printf("could not load image...n");
        return;
    }
    namedWindow("input image", WINDOW_AUTOSIZE);
    imshow("input image", src);

    int width = src.cols;
    int height = src.rows;
    int dims = src.channels();

    // 初始化定义
    int sampleCount = width * height;
    int clusterCount = 3;
    Mat labels;
    Mat centers;

    // RGB 数据转换到样本数据
    Mat sample_data = src.reshape(3, sampleCount);
    Mat data;
    sample_data.convertTo(data, CV_32F);

    // 运行K-Means
    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
    kmeans(data, clusterCount, labels, criteria, clusterCount, KMEANS_PP_CENTERS, centers);

    // 生成mask
    Mat mask = Mat::zeros(src.size(), CV_8UC1);
    int index = labels.at(0, 0);  //获取(0,0)点的label,与(0,0)点相同label的部分为背景
    labels = labels.reshape(1, height);
    for (int row = 0; row (row, col);
            if (c == index) {
                mask.at(row, col) = 255;  //将与(0,0)点相同label的部分像素值设为255
            }
        }
    }
    imshow("mask", mask);

    Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    dilate(mask, mask, se);  //背景白色区域膨胀操作

    // 生成高斯权重
    GaussianBlur(mask, mask, Size(5, 5), 0);  //通过高斯模糊,使轮廓边缘过度自然
    imshow("mask-blur", mask);

    // 基于高斯权重图像融合
    Mat result = Mat::zeros(src.size(), CV_8UC3);
    for (int row = 0; row (row, col) / 255.0;
            Vec3b bgr = src.at(row, col);
            bgr[0] = w1 * 255.0 + bgr[0] * (1.0 - w1);  //对bgr三通道进行分别融合
            bgr[1] = w1 * 0 + bgr[1] * (1.0 - w1);
            bgr[2] = w1 * 255.0 + bgr[2] * (1.0 - w1);
            result.at(row, col) = bgr;
        }
    }
    imshow("background-replacement-demo", result);
    waitKey(0);
}
void kmeans_color_card() {
    Mat src = imread("D:/images/test.png");
    if (src.empty()) {
        printf("could not load image...n");
        return;
    }
    namedWindow("input image", WINDOW_AUTOSIZE);
    imshow("input image", src);

    int width = src.cols;
    int height = src.rows;
    int dims = src.channels();

    // 初始化定义
    int sampleCount = width * height;
    int clusterCount = 4;
    Mat labels;
    Mat centers;

    // RGB 数据转换到样本数据
    Mat sample_data = src.reshape(3, sampleCount);
    Mat data;
    sample_data.convertTo(data, CV_32F);

    // 运行K-Means
    TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
    kmeans(data, clusterCount, labels, criteria, clusterCount, KMEANS_PP_CENTERS, centers);

    Mat card = Mat::zeros(Size(width, 50), CV_8UC3);  //初始化一个 输入图像宽*50 的色卡
    vector clusters(clusterCount);

    // 生成色卡比率
    for (int i = 0; i (i, 0)]++;
    }

    for (int i = 0; i (x, 0);
        int g = centers.at(x, 1);
        int r = centers.at(x, 2);
        rectangle(card, rect, Scalar(b, g, r), -1, 8, 0);
    }

    imshow("Image Color Card", card);
    waitKey(0);
}

效果:

1、KMeans聚类示例

OpenCV之C++经典案例插图19

2、使用KMeans根据图像颜色分割

OpenCV之C++经典案例插图20

3、图像背景平滑置换

OpenCV之C++经典案例插图21

4、获取图片中占比最高的前四种颜色色卡

OpenCV之C++经典案例插图22

文章来源于互联网:OpenCV之C++经典案例

THE END
分享
二维码