【图像处理笔记】图像分割之形态学分水岭

0 引言

迄今为止,我们讨论了基于三个主要概念的分割:边缘检测阈值处理区域提取。每种方法都有优点[例如全局阈值处理具有速度优势]和缺点[例如在基于边缘的分割中,需要进行后处理(如边缘连接)]。本节讨论的基于形态学分水岭概念的方法。分水岭分割体现了其他三种方法的许多概念,因此往往会产生更稳定的分割结果,包括连通的分割边界。

【图像处理笔记】图像分割之形态学分水岭插图

1 原理

分水岭方法是一种基于拓扑理论的数学形态学的分割方法,基本思想是把图像看作测地学上的拓扑地貌,将像素点的灰度值视为海拔高度,整个图像就像一张高低起伏的地形图。每个局部极小值及其影响区域称为集水盆,集水盆的边界则形成分水岭。算法的实现过程可以理解为洪水淹没的过程:最低点首先被淹没,然后水逐渐淹没整个山谷;水位升高到一定高度就会溢出,于是在溢出位置修建堤坝;不断提高水位,重复上述过程,直到所有的点全部被淹没;所建立的一系列堤坝就成为分隔各个盆地的分水岭。

分水岭的计算过程是一个迭代标注过程,通过寻找集水盆和分水岭对图像进行分割。经典的分水岭算法分为排序过程和淹没过程两个步骤,首先对每个像素的灰度级从低到高排序,然后在从低到高的淹没过程中,对每一个局部极小值在 h 阶高度的影响域进行判断及标注。

2 cv::watershed的使用

2.1 相关函数

OpenCV提供了函数watershed实现基于标记的分水岭算法。输入图像一般是原图,或者梯度图,由于噪声和梯度的局部不规则性会导致过度分割,控制过度分割的一种方法依据是标记。标记图像为CV_32S 类型,我们预先把一些区域标注好,图像中每个非零像素代表一个标签。对图像中部分像素做标记,表明它的所属区域是已知的。这些标注了的区域称之为种子点。watershed 算法会把这些标记的区域慢慢膨胀填充整个图像。

void watershed( InputArray image,  // 输入8位3通道图像。
                InputOutputArray markers //输入/输出标记的 32 位单通道图像(地图)。 与 image 具有相同的大小。
);                

OpenCV中,函数distanceTransform()用于计算图像中每一个非零点像素与其最近的零点像素之间的距离,输出的是保存每一个非零点与最近零点的距离信息。图像上越亮的点,代表了离零点的距离越远。可以根据距离变换的这个性质,经过简单的运算,用于细化字符的轮廓和查找物体质心(中心)。

void distanceTransform( InputArray src, //输入图像,8-bit 单通道灰度图像
                        OutputArray dst, //保存了每一个点与最近的零点的距离信息,点越亮离零点越远。
                        int distanceType,//距离的类型
                        int maskSize, //距离变换遮罩的大小,通常取 3, 5
                        int dstType=CV_32F); //输出图像类型      

2.2 标记的生成

标记由3部分组成:确定前景确定背景未知区域分为两步:

(1)通过 阈值分割+形态学【例1】,距离变换【例2】,鼠标交互等方法得到这三个区域。

(2)通过 connectedComponents【例1】或 drawContours【例2】标记区域,其中未知区域用0标记其他区域用大于0的整数标记

例1 阈值分割+形态学得到三区域→connectedComponents标记区域→分水岭

#include 
#include 
using namespace cv;
using namespace std;
int main() {
    Mat src;
    Mat img = imread("./16.tif");
    cvtColor(img, src, COLOR_BGR2GRAY);
    imshow("src", src);
    // 阈值处理
    Mat thresh;
    threshold(src, thresh, 0, 255, THRESH_OTSU);
// 生成确定背景区域 Mat background; Mat ele = getStructuringElement(MORPH_RECT, Size(3, 3)); dilate(thresh, background, ele, cv::Point(-1, -1), 2); bitwise_not(background, background); // 生成确定前景区域,并利用连通区域标记 Mat foreground; morphologyEx(thresh, foreground, MORPH_OPEN, ele, cv::Point(-1, -1), 2); int n = connectedComponents(foreground, foreground, 8, CV_32S);// 此时确定前景大于0,其余为0 // 生成标记图 Mat markers = foreground; markers.setTo(255, background);// 将确定背景设为255,其余为0的不动,即为unkown Mat markers8u; markers.convertTo(markers8u, CV_8U, 10);//灰度值*10使得差异变得明显 imshow("Markers(输入)", markers8u); // 分水岭算法标注目标的轮廓 watershed(img, markers);// 轮廓由-1表示 markers.convertTo(markers8u, CV_8U, 10);//灰度值*10使得差异变得明显 imshow("Markers(输出)", markers8u); // 后处理(颜色填充) Mat mark; markers.convertTo(mark, CV_8U);//转换后-1变成0 bitwise_not(mark, mark); vector colors; for (size_t i = 0; i (i, j); if (index > 0 && index (n)) dst.at(i, j) = colors[index - 1]; } } imshow("dst", dst); waitKey(0); return 0; }

【图像处理笔记】图像分割之形态学分水岭插图1

例2 梯度+距离变换得到三区域→drawContours标记区域→分水岭

分水岭分割的主要应用之一是,从背景中提取出接近一致的(团状)目标。由变化较小的灰度表征区域有较小的梯度之。因此,在实践中,我们常常看到分水岭分割应用到梯度图像,而不是应用到图像本身。在这一表述中,汇水盆地的区域极小值与对应感兴趣目标的梯度的极小值密切相关。

#include 
using namespace cv; 
using namespace std;
int main() {
    Mat src_bgr = imread("./18.png");
    imshow("src", src_bgr);
    Mat mask, src_gray;
    cvtColor(src_bgr, src_gray, COLOR_BGR2GRAY);

    // 1.梯度+距离变换得到前景区域
    Mat blurImg;
    blur(src_gray, blurImg, Size(7, 7));
    Mat gx, gy, gxy;
    Sobel(blurImg, gx, CV_16S, 1, 0, 3);
    Sobel(blurImg, gy, CV_16S, 0, 1, 3);
    convertScaleAbs(gx, gx);
    convertScaleAbs(gy, gy);
    gxy = gx + gy;
    Mat binImg;
    threshold(gxy, binImg, 110, 255, THRESH_BINARY);
    Mat ele = getStructuringElement(MORPH_RECT, Size(3, 3));
    morphologyEx(binImg, binImg, MORPH_OPEN, ele);
    morphologyEx(binImg, binImg, MORPH_CLOSE, ele);
    floodFill(binImg, Point(0, 0), Scalar(255));
    bitwise_not(binImg, binImg);
    Mat dist, binImg1;
    distanceTransform(binImg, dist, DIST_L2, 3);
    normalize(dist, dist, 0, 1.0, NORM_MINMAX);
    imshow("dist", dist);
    threshold(dist, binImg1, 0.4, 1.0, THRESH_BINARY);
    binImg1.convertTo(binImg1, CV_8U, 255);
    imshow("binImg1", binImg1);

    // 2.确定背景区域
    Mat markers = Mat::zeros(binImg1.size(), CV_32S);
    circle(markers, Point(5, 5), 3, Scalar(255), -1);
    inRange(src_gray, Scalar(0), Scalar(15), mask);

    // 3.生成标记图
    vector> contours;
    findContours(binImg1, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
    for (size_t i = 0; i (i), Scalar(static_cast(i) + 1), -1);
    }
    markers.setTo(255, mask);
    Mat markers8u;
    markers.convertTo(markers8u, CV_8U, 10);
    imshow("Markers1", markers8u);

    // 4.分水岭
    watershed(src_bgr, markers);

    // 5.后处理
    Mat mark;
    markers.convertTo(mark, CV_8U);
    bitwise_not(mark, mark);
    markers.convertTo(markers8u, CV_8U, 10);
    imshow("Markers2", markers8u);
    vector colors;
    for (size_t i = 0; i (i, j);
            if (index > 0 && index (contours.size()))
                dst.at(i, j) = colors[index - 1];
        }
    }
    imshow("dst", dst);
    waitKey(0);
    return 0;
}

【图像处理笔记】图像分割之形态学分水岭插图2

【图像处理笔记】图像分割之形态学分水岭插图3

3  watershed源码

3.1 大致流程

1. 对输入的标记图mask的边界(1像素)置为-1,即边界不处理

2. 初始阶段:遍历mask中所有点,将标记为0且四邻域中有标记大于0的点(也就是标记点外面的一圈点)进队。有256个队列,进哪个队列呢?分两种情况:(1)四邻域中只有一个标记大于0的点,计算该点和这个邻域点的梯度(差值),若梯度为250,就进第250个队列。由于输入的原图是三通道的,算梯度要算三个通道的梯度,选最大的;(2)四邻域中不止一个标记大于0的点,选择梯度最小的点进队。

3. 经过上一步,得到256个队列,有些队列是空的,有些不是。定位到第一个非空的队列,遍历队列中的点。比较这个点的四邻域,分三种情况:(1)四邻域中有一个以上的邻域标记大于0(且它们标记不同),该点为分水岭;(2)四邻域中只有一个邻域标记大于0,那该点和这个邻域点标记相同,即被这个邻域点扩充(3)邻域中没有大于0的标记点,这是不可能的。因为标记点要么是初始种子点,要么是初始阶段延伸的种子点的邻接点,即该点一定存在一个邻接点是标记点

4. 在上一步中,情况(1)的分水岭点被pop出队列,且在mask中被标记为-1情况(2)的点为新标记点,被pop出队列,同时查看其四邻域点,有没有没处理的点。没处理的点被push进队列(相当于又往外一圈),进哪个队列呢?和上面一样,根据梯度t。再次进入第3步,直到所有队列为空。有所不同的是,初始阶段从第0个队列开始找非空队列,而之后从min(t, active_queue)开始。也就是说,如果第二圈的点梯度都很大,就从第active_queue开始找非空队列。如果第二圈的梯度都很小,那就从最小的梯队开始找非空队列。

3.2 源码注解

注解来自OpenCV 源码中分水岭算法 watershed 函数源码注解,对比OpenCV 2.4.9,OpenCV 4.5中Mat取代了CvMat,cv::Mat是一个类(Class),而CvMat是一个Struct,获取元素的写法不同,如下:

Mat test = (Mat_(3, 3)  ();//获取元素的写法不同,之前是test->data.i
int istep = test.step/sizeof(int);// 步长 = 一行字节数 / sizeof(像素数据类型)
for (int i = 0; i 

 源码注解

#include "precomp.hpp"

// 结点,用于存储原始图img中像素的偏移量和输出图mask中像素的偏移量
typedef struct CvWSNode
{
    struct CvWSNode* next;
    int mask_ofs;
    int img_ofs;
}
CvWSNode;

// 队列,用于存储结点 CvWSNode
typedef struct CvWSQueue
{
    CvWSNode* first;
    CvWSNode* last;
}
CvWSQueue;

// 分配空间
static CvWSNode*
icvAllocWSNodes( CvMemStorage* storage )
{
    CvWSNode* n = 0;

    int i, count = (storage->block_size - sizeof(CvMemBlock))/sizeof(*n) - 1;

    n = (CvWSNode*)cvMemStorageAlloc( storage, count*sizeof(*n) );
    for( i = 0; i  storage;

    CvMat sstub, *src;
    CvMat dstub, *dst;
    CvSize size;
    CvWSNode* free_node = 0, *node;
    CvWSQueue q[NQ];                // 长度为256的CvWSQueue数组,注意数组中每个元素都是一个队列,队列中每个元素是一个节点
    int active_queue;               // 指明当前处理的队列,q[active_queue]
    int i, j;
    int db, dg, dr;
    int* mask;                      // 指向标记图像的指针
    uchar* img;                     // 指向原始图像的指针
    int mstep, istep;               // mstep是mask对应的一行像素数(不是字节数),istep是img对应的一行像素数
    int subs_tab[513];

    // MAX(a,b) = b + MAX(a-b,0)    取最大值
    #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
    // MIN(a,b) = a - MAX(a-b,0)    取最小值
    #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])

    // 进队操作
    #define ws_push(idx,mofs,iofs)  
    {                               
        if( !free_node )            
            free_node = icvAllocWSNodes( storage );
        node = free_node;           
        free_node = free_node->next;
        node->next = 0;             
        node->mask_ofs = mofs;      
        node->img_ofs = iofs;       
        if( q[idx].last )           
            q[idx].last->next=node; 
        else                        
            q[idx].first = node;    
        q[idx].last = node;         
    }

    // 出队操作
    #define ws_pop(idx,mofs,iofs)   
    {                               
        node = q[idx].first;        
        q[idx].first = node->next;  
        if( !node->next )           
            q[idx].last = 0;        
        node->next = free_node;     
        free_node = node;           
        mofs = node->mask_ofs;      
        iofs = node->img_ofs;       
    }

    // 求出 ptr1 和 ptr2 指向的像素 r,g,b 差值的最大值
    #define c_diff(ptr1,ptr2,diff)      
    {                                   
        db = abs((ptr1)[0] - (ptr2)[0]);
        dg = abs((ptr1)[1] - (ptr2)[1]);
        dr = abs((ptr1)[2] - (ptr2)[2]);
        diff = ws_max(db,dg);           
        diff = ws_max(diff,dr);         
        assert( 0 type) != CV_8UC3 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel input images are supported" );

    if( CV_MAT_TYPE(dst->type) != CV_32SC1 )
        CV_Error( CV_StsUnsupportedFormat,
            "Only 32-bit, 1-channel output images are supported" );

    if( !CV_ARE_SIZES_EQ( src, dst ))
        CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );

    size = cvGetMatSize(src);       // 获取图像的size
    storage = cvCreateMemStorage();

    // 步长 = 一行字节数 / sizeof(像素数据类型)
    istep = src->step;            // img是uchar型, sizeof(uchar) = 1,所以忽略除数  
    img = src->data.ptr;          // 获取 uchar类型指针
    mstep = dst->step / sizeof(mask[0]);    // mask是int(32SC1)型,sizeof(mask[0]) = 4
    mask = dst->data.i;           // 获取 int类型指针

    memset( q, 0, NQ*sizeof(q[0]) );    // 初始化队列q

    for( i = 0; i  0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) ) // 若该点为非标记点(0),且四邻域存在标记点(>0)
            {
                // 求出原图中该点到有标记点的四邻域中,梯度值最小(idx)方向的点,将该点和对应的最小梯度值放入q[idex]队列中
                // 两个像素的r,g,b 三个通道中相差最大的值作为像素间的梯度值
                uchar* ptr = img + j*3;
                int idx = 256, t;
                if( m[-1] > 0 )                
                    c_diff( ptr, ptr - 3, idx );
                if( m[1] > 0 )
                {
                    c_diff( ptr, ptr + 3, t );
                    idx = ws_min( idx, t );
                }
                if( m[-mstep] > 0 )
                {
                    c_diff( ptr, ptr - istep, t );
                    idx = ws_min( idx, t );
                }
                if( m[mstep] > 0 )
                {
                    c_diff( ptr, ptr + istep, t );
                    idx = ws_min( idx, t );
                }
                assert( 0 data.ptr;
    mask = dst->data.i;

    // recursively fill the basins
    // 递归地填满聚水盆
    for(;;)
    {
        int mofs, iofs;         // 将二维图像线性化后图像像素的坐标 mask_offset 和 img_offset 的缩写
        int lab = 0, t;
        int* m;
        uchar* ptr;

        // 如果这个灰度上的队列处理完了,就继续找下一个非空队列
        if( q[active_queue].first == 0 )
        {
            for( i = active_queue+1; i  0 ) lab = t;
        t = m[1];
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;            // 如果该像素点的标记类型和邻居像素标记类型都 > 0 且不同,则为分水岭
        }
        t = m[-mstep];
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
        t = m[mstep];
        if( t > 0 )
        {
            if( lab == 0 ) lab = t;
            else if( t != lab ) lab = WSHED;
        }
         // 因为标记点要么是初始种子点,要么是初始阶段延伸的种子点的邻接点
         // 该点一定存在一个邻接点是标记点,所以lab一定会赋值一次,不为 0
        assert( lab != 0 );  
        // 若lab > 0 ,则该点被周围的标记点扩充;若lab = -1(WSHED),则该点定义为分水岭,继续下一个循环      
        m[0] = lab;                 
        if( lab == WSHED )
            continue;
        // lab > 0 的情况,确定该点为标记点,且邻居点中存在未标记点的情况,将未标记点扩充为标记点
        if( m[-1] == 0 )
        {
            c_diff( ptr, ptr - 3, t );                  // 计算梯度t
            ws_push( t, mofs - 1, iofs - 3 );           // 将m[-1]这一未标记的点扩充为标记点,进队
            active_queue = ws_min( active_queue, t );   // 判断,若t 

  

 

 

参考

1. 冈萨雷斯《数字图像处理(第四版)》Chapter 10(所有图片可在链接中下载)

2.【youcans 的 OpenCV 例程200篇】180.基于距离变换的分水岭算法

3.OpenCV 源码中分水岭算法 watershed 函数源码注解

文章来源于互联网:【图像处理笔记】图像分割之形态学分水岭

THE END
分享
二维码